Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
1.
Biomed Res Int ; 2022: 1382604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35047628

RESUMEN

Anthocyanins are important pigments for flower color, determining the ornamental and economic values of horticultural plants. As a key enzyme in the biosynthesis of anthocyanidins, dihydroflavonol 4-reductase (DFR) catalyzes the reduction of dihydroflavonols to generate the precursors for anthocyanidins (i.e., leucoanthocyanidins) and anthocyanins. To investigate the functions of DFRs in plants, we cloned the GlaDFR1 and GlaDFR2 genes from the petals of Gentiana lutea var. aurantiaca and transformed both genes into Nicotiana tabacum by Agrobacterium-mediated leaf disc method. We further investigated the molecular and phenotypic characteristics of T1 generation transgenic tobacco plants selected based on the hygromycin resistance and verified by both PCR and semiquantitative real-time PCR analyses. The phenotypic segregation was observed in the flower color of the transgenic tobacco plants, showing petals darker than those in the wild-type (WT) plants. Results of high-performance liquid chromatography (HPLC) analysis showed that the contents of gentiocyanin derivatives were decreased in the petals of transgenic plants in comparison to those of WT plants. Ours results revealed the molecular functions of GlaDFR1 and GlaDFR2 in the formation of coloration, providing solid theoretical foundation and candidate genes for further genetic improvement in flower color of plants.


Asunto(s)
Oxidorreductasas de Alcohol , Flores , Gentiana , Pigmentación/fisiología , Proteínas de Plantas , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Clonación Molecular , Flores/enzimología , Flores/genética , Gentiana/enzimología , Gentiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , /genética
2.
Regul Toxicol Pharmacol ; 128: 105091, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34863905

RESUMEN

The present study aimed to evaluate the subchronic toxicity of feeding with phytase-transgenic maize line 11TPY050 in Sprague-Dawley (SD) rats. Rats (n = 10/sex/group) were fed with 12.5%, 25% or 50% (w/w) transgenic maize diet, 12.5%, 25% or 50% (w/w) non-transgenic isoline OSL940 maize diet, or 50% (w/w) commercially available Zhengdan958 maize diet for 90 days. Daily clinical observations and weekly measurements of body weights and food consumption were conducted. Blood samples were collected on day 46 and day 91 for hematology and clinical chemistry evaluations. At the end of the study, macroscopic and microscopic examinations were performed. No effects on body weight and food consumption were observed. The results of hematology, clinical chemistry, and absolute and relative organ weights in the transgenic maize group were comparable to those in the parental maize group. Several statistical differences were not dose-related and were not considered to be biologically significant. Furthermore, the terminal necropsy and histopathological examination showed no treatment-related changes among the groups. The results from the present 90-day feeding study of phytase-transgenic maize 11TPY050 indicated no unexpected adverse effects in SD rats. The phytase transgenic maize 11TPY050 has substantial equivalence with non-transgenic maize.


Asunto(s)
6-Fitasa/administración & dosificación , Plantas Modificadas Genéticamente/toxicidad , Zea mays/genética , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Alimentaria/efectos de los fármacos , Femenino , Pruebas Hematológicas , Masculino , Tamaño de los Órganos/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Ratas , Ratas Sprague-Dawley
3.
GM Crops Food ; 12(1): 435-448, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-34935587

RESUMEN

The ultraviolet B (UVB) sensitivity of rice cultivated in Asia and Africa varies greatly, with African rice cultivars (Oryza glaberrima Steud. and O. barthii A. Chev.) being more sensitive to UVB because of their low cyclobutane pyrimidine dimer (CPD) photolyase activity, which is a CPD repair enzyme, relative to Asian rice cultivars (O. sativa L.). Hence, the production of UVB-resistant African rice with augmented CPD photolyase activity is of great importance, although difficulty in transforming the African rice cultivars to this end has been reported. Here, we successfully produced overexpressing transgenic African rice with higher CPD photolyase activity by modifying media conditions for callus induction and regeneration using the parental line (PL), UVB-sensitive African rice TOG12380 (O. glaberrima). The overexpressing transgenic African rice carried a single copy of the CPD photolyase enzyme, with a 4.4-fold higher level of CPD photolyase transcripts and 2.6-fold higher activity than its PL counterpart. When the plants were grown for 21 days in a growth chamber under visible radiation or with supplementary various UVB radiation, the overexpressing transgenic plants have a significantly increased UVB resistance index compared to PL plants. These results strongly suggest that CPD photolyase remains an essential factor for tolerating UVB radiation stress in African rice. As a result, African rice cultivars with overexpressed CPD photolyase may survive better in tropical areas more prone to UVB radiation stress, including Africa. Collectively, our results provide strong evidence that CPD photolyase is a useful biotechnological tool for reducing UVB-induced growth inhibition in African rice crops of O. glaberrima.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Oryza , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Oryza/enzimología , Oryza/genética , Oryza/efectos de la radiación , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/efectos de la radiación , Dímeros de Pirimidina , Rayos Ultravioleta
4.
Biochem Soc Trans ; 49(5): 2007-2019, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623388

RESUMEN

Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.


Asunto(s)
Bioingeniería/métodos , Producción de Cultivos/métodos , Fotosíntesis/genética , Ingeniería de Proteínas/métodos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Catálisis , Cloroplastos/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Activación Enzimática/genética , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Ribulosa-Bifosfato Carboxilasa/genética , /genética , /crecimiento & desarrollo
5.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34445457

RESUMEN

Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, involved in the SL biosynthetic pathway. Quantitative real-time PCR revealed that CpCCD7 and CpCCD8 were down-regulated in wintersweet during branching. When new shoots were formed, expression levels of CpCCD7 and CpCCD8 were almost the same as the control (un-decapitation). CpCCD7 was expressed in all tissues, with the highest expression in shoot tips and roots, while CpCCD8 showed the highest expression in roots. Both CpCCD7 and CpCCD8 localized to chloroplasts in Arabidopsis. CpCCD7 and CpCCD8 overexpression restored the phenotypes of branching mutant max3-9 and max4-1, respectively. CpCCD7 overexpression reduced the rosette branch number, whereas CpCCD8 overexpression lines showed no phenotypic differences compared with wild-type plants. Additionally, the expression of AtBRC1 was significantly up-regulated in transgenic lines, indicating that two CpCCD genes functioned similarly to the homologous genes of the Arabidopsis. Overall, our study demonstrates that CpCCD7 and CpCCD8 exhibit conserved functions in the CCD pathway, which controls shoot development in wintersweet. This research provides a molecular and theoretical basis for further understanding branch development in wintersweet.


Asunto(s)
Arabidopsis , Calycanthaceae/genética , Dioxigenasas , Genes de Plantas , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Arabidopsis/enzimología , Arabidopsis/genética , Calycanthaceae/enzimología , Dioxigenasas/biosíntesis , Dioxigenasas/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
6.
Cells ; 10(5)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069320

RESUMEN

Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.


Asunto(s)
Análisis Mutacional de ADN , Ácido Graso Desaturasas/metabolismo , Mutagénesis Sitio-Dirigida , Ácido Oléico/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Semillas/enzimología , Ácido Graso Desaturasas/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Semillas/genética , /genética
7.
Plant Cell Environ ; 44(9): 3173-3183, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34008171

RESUMEN

Dinitrotoluene (DNT) has been extensively used in manufacturing munitions, polyurethane foams and other important chemical products. However, it is highly toxic and mutagenic to most organisms. Here, we synthesized a codon-optimized bacterial nitroreductase gene, NfsI, for plant expression. The kinetic analysis indicates that the recombinant NfsI can detoxify both 2,4-DNT and its sulfonate (DNTS), while it has a 97.6-fold higher catalytic efficiency for 2,4-DNT than DNTS. Furthermore, we overexpressed NfsI in switchgrass (Panicum virgatum L.), which is a multiple-purpose crop used for fodder and biofuel production as well as phytoremediation. The 2,4-DNT treatment inhibited root elongation of wild-type switchgrass plants and promoted reactive oxygen species (ROS) accumulation in roots. In contrast, overexpression of NfsI in switchgrass significantly alleviated 2,4-DNT-induced root growth inhibition and ROS overproduction. Thus, the NfsI overexpressing transgenic switchgrass plant removed 94.1% 2,4-DNT after 6 days, whose efficiency was 1.7-fold higher than control plants. Moreover, the comparative transcriptome analysis suggests that 22.9% of differentially expressed genes induced by 2,4-DNT may participate in NfsI-mediated 2,4-DNT detoxification in switchgrass. Our work sheds light on the function of NfsI during DNT phytoremediation for the first time, revealing the application potential of switchgrass plants engineered with NfsI.


Asunto(s)
Biodegradación Ambiental , Dinitrobencenos/metabolismo , Nitrorreductasas/metabolismo , Panicum/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Catálisis , Enterobacter cloacae/enzimología , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , NADP/metabolismo , Panicum/enzimología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Especies Reactivas de Oxígeno/metabolismo
8.
Toxins (Basel) ; 13(5)2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946742

RESUMEN

Fusarium graminearum, the causal agent of Fusarium head blight (FHB), produces trichothecenes including deoxynivalenol (DON), nivalenol (NIV), and 3,7,15-trihydroxy-12,13-epoxytrichothec-9-ene (NX-3). These toxins contaminate grains and cause profound health problems in humans and animals. To explore exploiting a fungal self-protection mechanism in plants, we examined the ability of F. graminearum trichothecene 3-O-acetyltransferase (FgTri101) to detoxify several key trichothecenes produced by F. graminearum: DON, 15-ADON, NX-3, and NIV. FgTri101 was cloned from F. graminearum and expressed in Arabidopsis plants. We compared the phytotoxic effects of purified DON, NIV, and NX-3 on the root growth of transgenic Arabidopsis expressing FgTri101. Compared to wild type and GUS controls, FgTri101 transgenic Arabidopsis plants displayed significantly longer root length on media containing DON and NX-3. Furthermore, we confirmed that the FgTri101 transgenic plants acetylated DON to 3-ADON, 15-ADON to 3,15-diADON, and NX-3 to NX-2, but did not acetylate NIV. Approximately 90% of the converted toxins were excreted into the media. Our study indicates that transgenic Arabidopsis expressing FgTri101 can provide plant protection by detoxifying trichothecenes and excreting the acetylated toxins out of plant cells. Characterization of plant transporters involved in trichothecene efflux will provide novel targets to reduce FHB and mycotoxin contamination in economically important plant crops.


Asunto(s)
Acetiltransferasas/metabolismo , Fusarium/genética , Tricotecenos/metabolismo , Acetilación , Acetiltransferasas/genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Clonación Molecular , Fusarium/enzimología , Fusarium/metabolismo , Inactivación Metabólica/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantones/metabolismo
9.
Food Chem ; 356: 129684, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33812194

RESUMEN

In this study, we aim to develop a novel loop mediated isothermal amplification (LAMP) coupled with TaqMan (LAMP-TaqMan) method for quick qualitative detection of genetically modified organism (GMOs). We designed four LAMP primers and one TaqMan probe for the LAMP-TaqMan detection method to detect the nopaline synthase gene (NOS) terminator in GMOs. This assay enabled the amplification of DNA within ~20 min at a constant temperature of 65 °C. This assay detected as few as five copies of target sequences, which had a high specificity similar to the TaqMan qPCR method. Furthermore, the LAMP-TaqMan detection method was successfully used to amplify and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel LAMP-TaqMan assay has been developed, which has the similar sensitivity but takes less time than the TaqMan qPCR method. This method offers a novel approach for rapid detection of GMOs in foods.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plantas Modificadas Genéticamente/enzimología , Productos Agrícolas/enzimología , Productos Agrícolas/genética , Cartilla de ADN/química , Cartilla de ADN/metabolismo , ADN de Plantas/análisis , ADN de Plantas/metabolismo , Límite de Detección , Plantas Modificadas Genéticamente/genética , /genética , Zea mays/enzimología , Zea mays/genética
10.
J Plant Physiol ; 260: 153404, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33744782

RESUMEN

Isochorismate synthase (ICS) is a key enzyme for the synthesis of salicylic acid (SA) in plants. SA mediates plant responses to both biotic and abiotic stresses. In previous studies, we found that overexpression of ICS (ICSOE) or suppression of ICS (ICSRNAi) affected the host response to Fusarium graminearum in barley. However, whether the barley ICS gene plays a role in adapting to abiotic stresses remains to be determined. In the present study, expression of the ICS gene was upregulated when treated with 20 % PEG6000, and ICSOE lines were more drought tolerant than wild type (WT) and ICSRNAi. In addition, the abscisic acid (ABA) levels in the ICSOE lines were higher than those in the WT and ICSRNAi lines under drought stress. High ABA levels significantly reduced Gs and E, which may impact water retention under drought stress. Under drought conditions, the activity of antioxidant enzymes was significantly higher in the ICSOE lines, correlating with a lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Enhanced antioxidant competence also contributed to drought tolerance in ICSOE lines. These findings help elucidate the abiotic stress resistance of the ICS pathway in barley.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hordeum/fisiología , Transferasas Intramoleculares/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Hordeum/enzimología , Hordeum/genética , Transferasas Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología
11.
Commun Biol ; 4(1): 215, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594248

RESUMEN

Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms-EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Eucommiaceae/enzimología , Hemiterpenos/biosíntesis , Látex/biosíntesis , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/genética , Eucommiaceae/genética , Hemiterpenos/química , Látex/química , Modelos Moleculares , Peso Molecular , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Conformación Proteica , Relación Estructura-Actividad
12.
Toxins (Basel) ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499086

RESUMEN

Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.


Asunto(s)
Antivirales/farmacología , Control Biológico de Vectores , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente/enzimología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas/farmacología , Toxinas Biológicas/farmacología , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Humanos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Proteínas Inactivadoras de Ribosomas/aislamiento & purificación , Toxinas Biológicas/aislamiento & purificación , Virosis/metabolismo , Virosis/virología , Virus/metabolismo , Virus/patogenicidad
13.
PLoS One ; 16(1): e0244305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33444331

RESUMEN

The Glycine max xyloglucan endotransglycosylase/hydrolase (EC 2.4.1.207), GmXTH43, has been identified through RNA sequencing of RNA isolated through laser microdissection of Heterodera glycines-parasitized root cells (syncytia) undergoing the process of defense. Experiments reveal that genetically increasing XTH43 transcript abundance in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] decreases parasitism. Experiments presented here show decreasing XTH43 transcript abundance through RNA interference (RNAi) in the H. glycines-resistant G. max[Peking/PI 548402] increases susceptibility, but it is unclear what role XTH43 performs. The experiments presented here show XTH43 overexpression decreases the relative length of xyloglucan (XyG) chains, however, there is an increase in the amount of those shorter chains. In contrast, XTH43 RNAi increases XyG chain length. The experiments show that XTH43 has the capability to function, when increased in its expression, to limit XyG chain extension. This outcome would likely impair the ability of the cell wall to expand. Consequently, XTH43 could provide an enzymatically-driven capability to the cell that would allow it to limit the ability of parasitic nematodes like H. glycines to develop a feeding structure that, otherwise, would facilitate parasitism. The experiments presented here provide experimentally-based proof that XTHs can function in ways that could be viewed as being able to limit the expansion of the cell wall.


Asunto(s)
Glucanos/metabolismo , Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Tylenchida/fisiología , Xilanos/metabolismo , Animales , Cromatografía en Gel , Femenino , Genotipo , Glucanos/química , Glicosiltransferasas/antagonistas & inhibidores , Glicosiltransferasas/genética , Interacciones Huésped-Parásitos , Peso Molecular , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Análisis de Componente Principal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , /genética , Xilanos/química
14.
Biotechnol Bioeng ; 118(4): 1431-1443, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33241854

RESUMEN

Producing recombinant proteins in transgenic plant cell suspension cultures in bioreactors provides controllability, reproducibility, scalability, and low-cost production, although low yields remain the major challenge. The studies on scaling-up to pilot-scale bioreactors, especially in conventional stainless-steel stirred tank bioreactors (STB), to produce recombinant proteins in plant cell suspension cultures are very limited. In this study, we scaled-up the production of rice recombinant butyrylcholinesterase (rrBChE), a complex hydrolase enzyme that can be used to prophylactically and therapeutically treat against organophosphorus nerve agents and pesticide exposure, from metabolically regulated transgenic rice cell suspension cultures in a 40-L pilot-scale STB. Employing cyclical operation together with a simplified-process operation (controlling gas sparging rate rather than dissolved oxygen and allowing natural sugar depletion) identified in lab-scale (5 L) bioreactor studies, we found a consistent maximum total active rrBChE production level of 46-58 µg/g fresh weight in four cycles over 82 days of semicontinuous operation. Additionally, maintaining the overall volumetric oxygen mass transfer coefficient (kL a) in the pilot-scale STB to be equivalent to the lab-scale STB improves the maximum total active rrBChE production level and the maximum volumetric productivity to 85 µg/g fresh weight and 387 µg L-1 day-1 , respectively, which are comparable to the lab-scale culture. Here, we demonstrate pilot-scale bioreactor performance using a metabolically regulated transgenic rice cell culture for long-term, reproducible, and sustained production of rrBChE.


Asunto(s)
Butirilcolinesterasa/biosíntesis , Oryza , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Butirilcolinesterasa/genética , Oryza/enzimología , Oryza/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
15.
J Exp Bot ; 72(5): 1634-1648, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33249501

RESUMEN

The salicinoids are phenolic glycosides that are characteristic secondary metabolites of the Salicaceae, particularly willows and poplars. Despite the well-known pharmacology of salicin, that led to the development of aspirin >100 years ago, the biosynthetic pathways leading to salicinoids have yet to be defined. Here, we describe the identification, cloning, and biochemical characterization of SpUGT71L2 and SpUGT71L3-isozymic glycosyltransferases from Salix purpurea-that function in the glucosylation of ortho-substituted phenols. The best substrate in vitro was salicyl-7-benzoate. Its product, salicyl-7-benzoate glucoside, was shown to be endogenous in poplar and willow. Together they are inferred to be early intermediates in the biosynthesis of salicortin and related metabolites in planta. The role of this UDP-glycosyltransferase was confirmed via the metabolomic analysis of transgenic plants produced by RNAi knockdown of the poplar orthologue (UGT71L1) in the hybrid clone Populus tremula×P. alba, INRA 717-1B4.


Asunto(s)
Glicósidos/biosíntesis , Glicosiltransferasas , Salix , Glicosiltransferasas/genética , Plantas Modificadas Genéticamente/enzimología , Populus/genética , Salix/enzimología , Salix/genética , Uridina Difosfato
16.
Plant Biol (Stuttg) ; 23(2): 341-350, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32808478

RESUMEN

Polyamines play an important role in stress response. In the pathway of polyamines synthesis, S-adenosylmethionine decarboxylase (SAMDC) is one of the key enzymes. In this study, a full length cDNA of SAMDC (AhSAMDC) was isolated from peanut (Arachis hypogaea L.). Phylogenetic analysis revealed high sequence similarity between AhSAMDC and SAMDC from other plants. In peanut seedlings exposed to sodium chloride (NaCl), the transcript level of AhSAMDC in roots was the highest at 24 h that decreased sharply at 72 and 96 h after 150 mM NaCl treatment. However, the expression of AhSAMDC in peanut leaves was significantly inhibited, and the transcript levels in leaves were not different compared with control These results implied the tissue-specific and time-specific expression of AhSAMDC. The physiological effects and functional mechanism of AhSAMDC were further evaluated by overexpressing AhSAMDC in tobaccos. The transgenic tobacco lines exhibited higher germination rate and longer root length under salt stress. Reduced membrane damage, higher antioxidant enzyme activity, and higher proline content were also observed in the transgenic tobacco seedlings. What's more, AhSAMDC also led to higher contents of spermidine and spermine, which can help to scavenge reactive oxygen species. Together, this study suggests that AhSAMDC enhances plant resistance to salt stress by improving polyamine content and alleviating membrane damage.


Asunto(s)
Adenosilmetionina Descarboxilasa , Arachis , Plantas Modificadas Genéticamente , Estrés Salino , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Arachis/enzimología , Arachis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Estrés Salino/genética , Cloruro de Sodio/toxicidad , /enzimología , /genética
17.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322321

RESUMEN

The present study was designed to serve as a comprehensive analysis of Citrus sinensis (C. sinensis) pectin acetylesterases (CsPAEs), and to assess the roles of these PAEs involved in the development of citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) infection. A total of six CsPAEs were identified in the genome of C. sinensis, with these genes being unevenly distributed across chromosomes 3, 6, and 9, and the unassembled scaffolds. A subset of CsPAEs were found to be involved in responses to Xcc infection. In particular, CsPAE2 was identified to be associated with such infections, as it was upregulated in CBC-susceptible variety Wanjincheng and inversely in CBC-resistant variety Calamondin. Transgenic citrus plants overexpressing CsPAE2 were found to be more susceptible to CBC, whereas the silencing of this gene was sufficient to confer CBC resistance. Together, these findings provide evolutionary insights into and functional information about the CsPAE family. This study also suggests that CsPAE2 is a potential candidate gene that negatively contributes to bacterial canker disease and can be used to breed CBC-resistant citrus plants.


Asunto(s)
Esterasas/metabolismo , Plantas Modificadas Genéticamente/microbiología , Xanthomonas/patogenicidad , Esterasas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/enzimología
18.
Planta ; 252(5): 89, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33064214

RESUMEN

MAIN CONCLUSION: Molecular function ofRING E3 ligase SbHCI1is involved in ABA-mediated basal heat stress tolerancein sorghum. Global warming generally reduces plant survival, owing to the negative effects of high temperatures on plant development. However, little is known about the role of Really Interesting New Gene (RING) E3 ligase in the heat stress responses of plants. As such, the aim of the present study was to characterize the molecular functions of the Sorghum bicolor ortholog of the Oryza sativa gene for Heat- and Cold-Induced RING finger protein 1 (SbHCI1). Subcellular localization revealed that SbHCI1 was mainly associated with the cytosol and that it moved to the Golgi apparatus under heat stress conditions. The fluorescent signals of SbHCI1 substrate proteins were observed to migrate to the cytoplasm under heat stress conditions. Bimolecular fluorescence complementation (BiFC) and yeast two-hybrid (Y2H) assays revealed that SbHCI1 physically interacted with OsHCI1 ortholog partner proteins in the cytoplasm. Moreover, an in vitro ubiquitination assay revealed that SbHCI1 polyubiquitinated each of the three interacting proteins. The ectopic overexpression of SbHCI1 in Arabidopsis revealed that the protein was capable of inducing abscisic acid (ABA)-hypersensitivity and basal heat stress tolerance. Therefore, SbHCI1 possesses E3 ligase activity and may function as a positive regulator of heat stress responses through the modulation of interacting proteins.


Asunto(s)
Ácido Abscísico , Calor , Proteínas de Plantas , Sorghum , Estrés Fisiológico , Ubiquitina-Proteína Ligasas , Ácido Abscísico/farmacología , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Sorghum/efectos de los fármacos , Sorghum/enzimología , Sorghum/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977586

RESUMEN

Floral scent is a key ornamental trait that determines the quality and commercial value of orchids. Geraniol, an important volatile monoterpene in orchids that attracts pollinators, is also involved in responses to stresses but the geraniol synthase (GES) responsible for its synthesis in the medicinal orchid Dendrobium officinale has not yet been identified. In this study, three potential geraniol synthases were mined from the D. officinale genome. DoGES1, which was localized in chloroplasts, was characterized as a geraniol synthase. DoGES1 was highly expressed in flowers, especially in petals. DoGES1 transcript levels were high in the budding stage of D. officinale flowers at 11:00 a.m. DoGES1 catalyzed geraniol in vitro, and transient expression of DoGES1 in Nicotiana benthamiana leaves resulted in the accumulation of geraniol in vivo. These findings on DoGES1 advance our understanding of geraniol biosynthesis in orchids, and lay the basis for genetic modification of floral scent in D. officinale or in other ornamental orchids.


Asunto(s)
Proteínas de Cloroplastos , Cloroplastos , Dendrobium , Flores , Odorantes , Monoéster Fosfórico Hidrolasas , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Dendrobium/enzimología , Dendrobium/genética , Flores/enzimología , Flores/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , /genética
20.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987929

RESUMEN

In the present study, we have shown the transcriptional changes in a chlorosis model transgenic tobacco plant, i-amiCHLI, in which an artificial micro RNA is expressed in a chemically inducible manner to silence the expression of CHLI genes encoding a subunit of a chlorophyll biosynthetic enzyme. Comparison to the inducer-treated and untreated control non-transformants and untreated i-amiCHLI revealed that 3568 and 3582 genes were up- and down-regulated, respectively, in the inducer-treated i-amiCHLI plants. Gene Ontology enrichment analysis of these differentially expressed genes indicated the upregulation of the genes related to innate immune responses, and cell death pathways, and the downregulation of genes for photosynthesis, plastid organization, and primary and secondary metabolic pathways in the inducer-treated i-amiCHLI plants. The cell death in the chlorotic tissues with a preceding H2O2 production was observed in the inducer-treated i-amiCHLI plants, confirming the activation of the immune response. The involvement of activated innate immune response in the chlorosis development was supported by the comparative expression analysis between the two transgenic chlorosis model systems, i-amiCHLI and i-hpHSP90C, in which nuclear genes encoding different chloroplast proteins were similarly silenced.


Asunto(s)
Fotosíntesis/genética , Necrosis y Clorosis de las Plantas/genética , Proteínas de Plantas/genética , Transcriptoma , Clorofila/biosíntesis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente/enzimología , /genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...